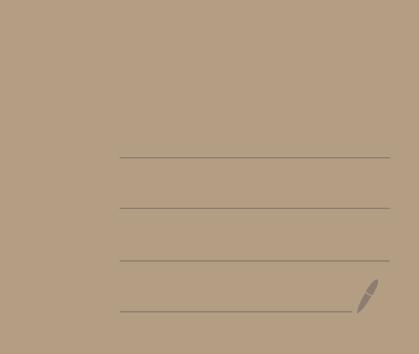
Topic 8 -Undefermined Coefficients



Topic 8- Method of undetermined cuefficients We want to be able to solve: $a_2y'+a_1y'+a_0y=b(x)$ Where az, a., a. are constants. Method: () Find general solution y_h to find $a_2y'' + a_1y' + a_0y = 0$ $a_2y'' + a_1y' + a_0y = 0$ 2 Guess a particular solution topic yp to $\alpha_2 y'' + \alpha_1 y' + \alpha_2 y = b(x)$ (3) The general solution to Use topic

$$a_2 y'' + a_1 y' + a_0 y = b(x)$$

is
$$y = y_h + y_p$$

b(x)	y_p guess for undetermined coefficients
constant	A
degree one polynomial such as: $5x - 3$ or $2x$	Ax + B
degree two polynomial such as: $10x^2 - x + 1$ or $x^2 + x$ or $2x^2 - 3$	$Ax^2 + Bx + C$
$\sin(kx)$ where k is a constant	$A\cos(kx) + B\sin(kx)$
$\cos(kx)$ where k is a constant	$A\cos(kx) + B\sin(kx)$
exponential such as: e^{kx} or $-2e^{kx}$	Ae^{kx}
degree one poly times exponential such as: xe^{kx} or $(2x+1)e^{kx}$	$(Ax+B)e^{kx}$

solution to EX: Find the general $y' + 3y' + 2y = 2x^{2}$ Step 1: Solve y'' + 3y' + 2y = 0The characteristic equation is Factor way: $r^{2} + 3r + 2 = 0$ (r+1)(r+2)=0r=-1,-2The roots are: $\Gamma = \frac{-3 \pm \sqrt{3^2 - 4(1)(z)}}{z(1)}$ $= -3\pm\sqrt{1}$ $= -3 \pm 1 = -3 \pm 1, -3 - 1 = -1, -2$

We get $2A+6AX+3B+2Ax^2+2BX+2C=2x^2$ Regrouping: $2A_{1}x^{2} + (GA+2B)X + (2A+3B+2C) = 2x^{2}$ $2x^{2}+0x+0$ Get : 2A = 2 (D) 6A + 2B = 0 (2) 2A + 3B + 2C = 0 (3) zA=2() gives A=1. Plug into (2) and get 6(1)+2B=0. (B=-3) Plug into (3) and get 2(1)+3(-3)+2C=0(C = 7/2) Thus, $y_{p} = A_{x+B}x+C = x^{2}-3x+\frac{7}{2}$

Step 3: The general solution to

$$y'' + 3y' + 2y = 2x^{2}$$

is
 $y = y_{h} + y_{p}$
 $y = c_{1}e^{-x} + c_{2}e^{2x} + x^{2} - 3x + \frac{7}{2}$
Ex: Solve
 $y'' - y' + y = 2 \sin(3x)$
Step 1: Solve
 $y'' - y' + y = 0$

The characteristic equation is

$$r^{2} - r + 1 = 0$$
The roots are

$$r = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4(1)(1)}}{Z(1)}$$

$$= \frac{1 \pm \sqrt{-3}}{Z} = \frac{1 \pm \sqrt{3}\sqrt{-1}}{Z}$$

$$= \frac{1 \pm \sqrt{3} i}{Z} = \frac{1 \pm \sqrt{3}}{Z} \frac{1}{Z} \frac{1}{Z} \frac{\sqrt{3}}{Z} \frac{1}{Z} \frac{1}{Z} \frac{\sqrt{3}}{Z} \frac{1}{Z} \frac{1}{Z}$$

In our case we get:

$$y_{h} = c_{1}e^{x/2}\cos\left(\frac{\sqrt{3}}{2}x\right) + c_{2}e^{x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)$$

$$\frac{Step 2:}{y''-y'+y} = 2\sin(3x)$$

$$\frac{y''-y'+y}{b(x)}$$

$$Gvess:$$

$$y_{p} = A\cos(3x) + B\sin(3x)$$

$$We ge+$$

$$y_{p}' = -3A\sin(3x) + 3B\cos(3x)$$

$$y_{p}'' = -9A\cos(3x) - 9B\sin(3x)$$

$$Plug \text{ these into the equation:}$$

 $(-9A\cos(3x) - 9B\sin(3x))$ Уp - Yp -(-3Asin(3x)+3Bcus(3x))+ (Acos(3x) + Bsin(3x)) $= 2 \sin(3x)$

Kegrouping: (3A-8B), sin(3x) + (-8A-3B)cos(3x) $= 2 \sin(3x)$

Need

$$3A - 8B = 2$$
 (D)
 $-8A - 3B = 0$ (2)
 $3B = -\frac{3}{2}B$

Plug into (1):
$$3(\frac{-3}{8}B) - 8B = 2$$

 $-\frac{9}{8}B - 8B = 2$
 $-\frac{73}{8}B = 2$
 $B = \frac{-16}{73}$
So, $A = \frac{-3}{8}B = -\frac{3}{8}(\frac{-16}{73}) = \frac{6}{73}$
Thus,
 $Y_{p} = \frac{6}{73}\cos(3x) - \frac{16}{73}\sin(3x)$
 $A = \frac{6}{73}$
Step 3: The general solution to

y''-y'+y=Zsin(3x)ī S $\begin{aligned} y &= y_h + y_p \\ y &= c_1 e^{\frac{x}{2}} \cos(\frac{\sqrt{3}}{2}x) + c_2 e^{-\frac{x}{2}} \sin(\frac{\sqrt{3}}{2}x) \\ &+ \frac{6}{73} \cos(3x) - \frac{16}{73} \sin(3x) \end{aligned}$

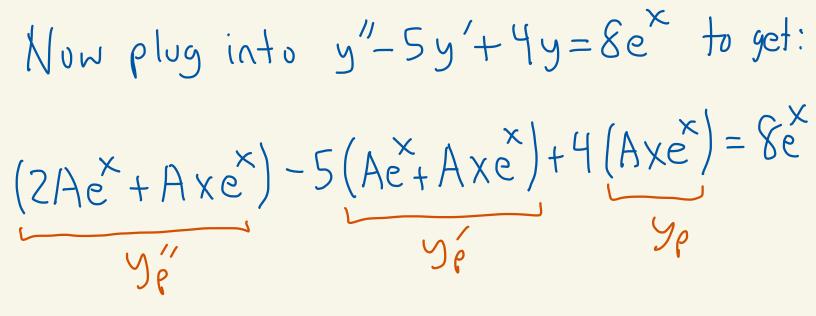
What can go wrong with the guessing method for yp? If your ye guess appears as a term in Yh then you need to multiply your quess by powers of X until your guess doesn't appear as a term in Yh

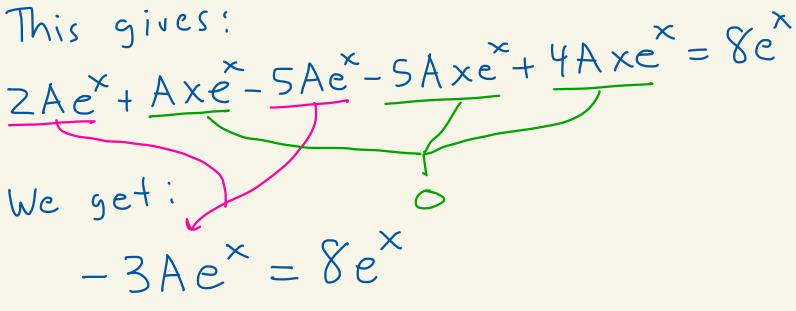
EX: Solve $y'' - 5y' + 4y = 8e^{x}$ Stepli Solue $\gamma'' - 5\gamma + 4\gamma = 0$ The characteristic equation is $r^2 - 5r + 4 = 0$ (r-4)(r-1)=0r=4,1The roots are $-(-5) \pm \sqrt{(-5)^{2}} - 4(1)(4)$ 2(1) $= \frac{5 \pm \sqrt{9}}{2} = \frac{5 \pm 3}{2}$ $= \frac{5+3}{2}, \frac{5-3}{2} = 4, 1$

The solution to
$$y'' - 5y' + 4y = 0$$

is $y_h = c_1 e^{4x} + c_2 e^{x}$

 $(Ae^{\times}) - 5(Ae^{\times}) + 4(Ae^{\times}) = 8e^{\times}$ y"-5y+4y This gives $0 = 8e^{\times}$ This isn't solvable. Since yp=Ae appears as a term in $Y_{L} = c_{1}e^{4x} + (c_{2}e^{x})$ we need to multiply our guess by an X. Instead guess: yp=Axex $y'_{p} = Ae^{x} + Axe^{x}$ We have $y_p'' = Ae^{\times} + (Ae^{\times} + Axe^{\times})$ $= 2 Ae^{+} Axe^{+}$





Need -3A = 8

 $S_{0}, A = -\frac{8}{3}$ Thus, $y_p = -\frac{8}{3} \times e^{\times}$ y'' - 5y' + 4y = 8eSolves

Step 3'. The general solution to
$$y'' - 5y' + 4y = 8e^{\times}$$

is

$$y = y_h + y_p$$

= $c_1 e^{4x} + c_2 e^{x} - \frac{8}{3} \times e^{x}$

Ex: Solve
$$y''-zy'+y=e^{x}$$

Step 1: Solve $y''_- zy' + y = 0$ The characteristic equation is $r^2 - 2r + 1 = 0$ We get (r-1)(r-1) = 0So we get a repeated real root r = 1

Then, x $y_{h} = c_{1}e^{x} + c_{2}xe^{x}$ is the general solution to y'' - Zy' + y = 0

Step 2: Now we guess yp for y'' - zy' + y = e'6(X)

The table says to guess
$$y_p = Ae^{x}$$

But this appears in $y_h = c_1e^{x} c_2 x e^{x}$
So multiply by x and guess $y_p = Axe^{x}$
(our guess)
But this appears in $y_h = c_1e^{x} + c_2xe^{x}$
But this appears by x again
to get $y_p = Ax^2e^{x}$
Now we plug it in.
 $y_p = Ax^2e^{x}$
 $y'_p = 2Axe^{x} + Ax^2e^{x}$
 $y''_p = (2Ae^{x} + 2Axe^{x}) + (2Axe^{x} + Ax^2e^{x})$
 $= 2Ae^{x} + 4Axe^{x} + Ax^2e^{x}$

Plug these into $x'' - 2y' + y = e^{x}$

to get: (ZAe+4Axe+Axe) -2(ZAxe+Axe) $+Ax^2e^x = e^x$

This gives: 2Aex+4Axe+Axe-4Axex-2Axe+Axex We get: $ZAe^{x}=e^{x}$

Need ZA = 1

50, $A = \frac{1}{2}$

Thus, $y_p = \frac{1}{z} x^2 e^x$ solves

$$y''-Zy'+y=e^{x}$$

Step 3: The general solution to

$$y''-Zy'+y=e^{x}$$

is

$$y = y_{h}+y_{p} = c_{1}e^{x}+c_{2}xe^{x}+\frac{1}{2}x^{2}e^{x}$$

There is also the situation where the b(x) on the right side of the equation is a sum of terms. In this case Your guess would be a sum of terms, one for each term in b(x) Ex: For y'' + 2y' = 2x + 5 - e'yon would guess:

$$Ex: Fur y'' + y = 2sin(x) + x^{2}$$
you would guess:

$$y_{p} = Hsin(x) + Bcor(x) + Cx^{2} + Dx + E$$

 $y_p = A \times + B + C e^{\times}$